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The present study concerns the dynamic radiation force on solid elastic spheres exerted by a plane wave with
two frequencies �bichromatic wave� considering the nonlinearity of the fluid. Our approach is based on solving
the wave scattering for the sphere in the quasilinear approximation within the preshock wave range. The
dynamic radiation force is then obtained by integrating the component of the momentum flux tensor at the
difference of the primary frequencies over the boundary of the sphere. Results reveal that effects of the
nonlinearity of the fluid play a major role in dynamic radiation force leading it to a parametric amplification
regime. The developed theory is used to calculate the dynamic radiation force on three different solid spheres
�aluminum, silver, and tungsten�. Resonances are observed in the spectrum of the force on the spheres. They
have larger amplitude and better shape than resonances present in static radiation force.
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I. INTRODUCTION

Among nonlinear effects of acoustic wave propagation in
fluids, radiation pressure �force� �1� and streaming �2� are
worth noticing. These phenomena come together as an inci-
dent wave encounters an obstacle. They are physically dif-
ferent but may combine, producing an effective force upon
the obstacle. Usually these phenomena cannot be separated
in actual fluids �3�. When thermoviscous effects are negli-
gible, streaming can be ruled out. With respect to time de-
pendence, radiation force is either static or dynamic. Static
radiation force is a time averaged quantity produced on a
target by a monochromatic acoustic wave. The dynamic
counterpart is an oscillatory force exerted on a target by a
bichromatic acoustic wave. Here we consider that this force
oscillates in time at the difference frequency of the wave,
i.e., the difference between the primary wave frequencies.

The utilization of dynamic radiation force in science and
technology has broadened. It has been applied for measuring
ultrasound power of ultrasonic transducers �4�, inducing os-
cillation in bubbles and liquid drops �5,6�, and exciting
modes in capillary bridges �7�. Dynamic radiation force has
become the underlying principle in some elastography tech-
niques such as shear wave elasticity imaging �8� and vibro-
acoustography �9�. Using vibrometry, the viscoelasticity of
transparent materials can be determined by locally measuring
the vibration of a embedded sphere induced by dynamic
radiation force �10�.

In a pioneer work, King �11� calculated the static radiation
force exerted on a rigid sphere by a plane traveling wave in
a lossless fluid. Study on the static force of compressible and
elastic spheres followed �12,13�. It was promptly noticed that
the static radiation force exhibits fluctuations related to the
mechanical properties of the sphere. Effects of viscosity and
thermal conductivity of the host fluid on the static radiation
force over a rigid sphere were also theoretically accounted
�14�. For elastic solid media, a theoretical formulation of the
radiation force problem can be found in Ref. �15�.

The influence of the nonlinearity of the fluid on static
radiation force is negligible, at least for lossless fluids where
the nonlinear parameter B /A�100 �16,17�. The dynamic ra-
diation force exerted on a solid sphere by a plane traveling
wave has been theoretically investigated in Ref. �18�. Experi-
mental validation of the theory is found in Ref. �19�. In both
works, the difference frequency was assumed to be very nar-
row. On that account the magnitude of dynamic and static
radiation forces are alike. Dynamic radiation force exerted
on an object is directly caused by the pressure wave at the
difference frequency acting on the object. It is known that
the wave at the difference frequency might be subjected to
parametric amplification �20�. This suggests that dynamic ra-
diation force itself should achieve a regime of parametric
amplification. Silva et al. �21� verified that the dynamic ra-
diation force on an acrylic sphere can be greatly amplified as
the difference frequency is increased.

The aim of this work is to analyze the dynamic radiation
force exerted on a solid elastic sphere in the parametric re-
gime. This analysis should be carried considering the nonlin-
earity of the fluid in the problem. To the best of the author’s
knowledge, this problem has not yet been treated. To accom-
plish this task we have to solve the acoustic scattering for the
sphere in at least the quasilinear approximation. In what fol-
lows we present, based on regular perturbation technique, the
wave equations in the quasilinear approximation for lossless
fluids. The solution for a bichromatic plane traveling wave is
derived from these equations within the preshock wave
range. Using the Mie scattering theory we obtain a descrip-
tion for the scattered waves by the elastic sphere. The
yielded result is used in an vector integral formula obtained
for the dynamic radiation force. We apply the developed
theory to analyze the dynamic radiation force on three dif-
ferent elastic spheres, namely, aluminum, silver, and tung-
sten. A connection of dynamic radiation force and the reso-
nance scattering theory �RST� is established. The spectrum
of the dynamic radiation force for the spheres is numerically
evaluated. Resonances are observed in the spectrum of the
force. They depend in a unique manner on the mechanical
and elastic parameters of the sphere. Thus, the resonances in
the spectrum could be used for characterization of materials.*Electronic address: glauber@pesquisador.cnpq.br
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Furthermore, their magnitudes are up to 81 dB higher than
those found in static radiation force.

II. NONLINEAR WAVE PROPAGATION
AND SCATTERING

Consider a homogeneous and isotropic fluid with adia-
batic speed of sound c0, in which thermal conductivity and
viscosity are neglected. The fluid has infinite extent and is
characterized by the following acoustic fields: pressure p,
density �, and particle velocity v=−��. The function � is
the velocity potential and � is the gradient operator. These
fields are functions of the position vector r and time t. At
rest, these quantities assume constant values p= p0, �=�0,
and v=0. The acoustic fields are governed by the dynamic
equations of ideal fluids. By using the regular perturbation
technique, one can expand the velocity potential in terms of
the Mach number ��1 as �=���1�+�2��2�+O��3�, where
the superindexes indicate the order of the potential functions.
Any analysis of radiation force has to be done considering
at least the quasilinear approximation, i.e., second-order
acoustic fields.

To obtain the dynamic radiation force over an object, we
have to solve the scattering of a bichromatic wave for the
object. Consider a bichromatic traveling plane wave of finite
amplitude with primary frequencies �1 and �2 propagating
along the z axis. The wave is formed by a sinusoidal excita-
tion at z=0. Due to the nonlinear nature of wave propaga-
tion, a third wave at the difference frequency �21=�2−�1
arises in the fluid. Suppose the bichromatic wave hits a
sphere of radius a placed in the z axis at the distance z0 from
the acoustic source. The elastic sphere has density �1, com-
pressional and shear speed of sound denoted, respectively, by
cc and cs. To simplify our analysis we consider k21z0�1 and
a�z0. Let us denote the complex amplitudes of the potential
functions �incident plus scattered� at the frequencies �1, �2,
and �21 by, respectively, �̂1, �̂2, and �̂21. The total potential
for scattering problem can be found using the Mie scattering
theory. Accordingly, the velocity potentials in terms of
spherical waves in the spherical coordinates �r ,� ,�� are
given by �21�

�̂m = Am Re �
n=0

+	

�2n + 1�in�hn
�2��kmr�

+ Sn�xm�hn
�1��kmr��Pn�cos ��, m = 1,2, �1�

�̂21 = A21 Re �
n=0

+	

�2n + 1�in�hn
�2��k21r�

+ Sn�x21�hn
�1��k21r��Pn�cos �� , �2�

where Am=c0e−ikmz0 / �2km�, A21=
c0z0e−ik21z0 /4, Re is the
real part of a complex quantity, i is the imaginary unit, km
=�m /c0, and k21=�21/c0. The quantity 
=1+B /A, where
B /A is the so-called nonlinear parameter of the fluid. The
functions hn

�1� and hn
�2� are, respectively, the first- and second-

kind spherical Hankel functions of nth order, while Pn is the
Legendre polynomial of nth order.

The quantity Sn is the modal scattering function. To find
this function we apply the solid elastic-fluid boundary
conditions on the sphere surface. These conditions yield a
linear system whose solution is

Sn = det�a11 d12 d13

a21 d22 d23

0 d32 d33
�det−1�d11 d12 d13

d21 d22 d23

0 d32 d33
� . �3�

The matrix elements of this equation are found in Ref. �22�.

III. THEORY OF DYNAMIC RADIATION FORCE

Let the Fourier transform of a function g�t� be denoted by
F�g�. The inverse transform is represented by F−1. Consider
that a wave hits an object whose boundary at rest is denoted
by �0. The dynamic radiation force exerted by a bichromatic
wave on an object is given by �18�

f21�t� = F−1�f̃21� , �4�

where

f̃21 = −� �
�0

F�p�2�n + �0v�1�v�1� · n��21
dS

− i��21�0F	� �
��t�

��1�ndS

�21

, �5�

with dS being the area element. The moving boundary of the
object is represented by ��t�. The quantity �0v�1�v�1� is the
Reynolds’ stress tensor, while p�2� is the second-order pres-
sure given by

p�2� = �2�0	 1

2c0
2� ���1�

�t
�2

−
���1�2

2
+

���2�

�t

 . �6�

We restrict our analysis to waves in which �21��1, other-
wise we may have superposition of the dynamic radiation
force at �21 and other forces caused by the waves at the
primary frequencies.

The second integral in the right-hand side of Eq. �5� de-
pends on the variation of the object boundary caused by the
incident wave. The evaluation of this integral for a moving
object is a hard task because this is a self-coupled problem.
We have to calculate the force on the object in first order by
integrating the linear pressure on the boundary of the object.
However, the pressure may deform or move the boundary of
the object. We shall show an approximate calculation of this
term for a rigid spherical target.

Consider a rigid sphere of radius a and density �1 sus-
pended in a fluid. The origin of the coordinate system coin-
cides with the center of the sphere at rest. We assume the
sphere oscillates only along the z axis. The variation �z in
the first-order approximation of the normal vector of the
sphere is given by

n = er − �zez + O��2ez� ,

where er is the radial unit vector and ez is the unit vector
along the z direction. We have �z=z1e−i�1t+z2e−i�2t, z1
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and z2 are the amplitudes of oscillation of the sphere. The
second integral of Eq. �5� might be approximated to

F	� �
��t�

��1�ndS

�21

�
ez

a
� �

�0

F���1��z��21
dS .

�7�

The amplitudes of oscillation are given in terms of the
mechanical impedances of the sphere Z1 and Z2 at the
frequencies �1 and �2 as �23�

zm =
i

�mZm
� �

�0

pm
�1�dS, m = 1,2, �8�

where pm
�1�=��0��m

�1� /�t is the linear pressure and

Zm = i
4

3
�a3�m	�0

2 + xm
2 − ixm

3

4 + xm
4 + �1
, m = 1,2. �9�

The quantity xm=�ma /c0 is the size factor of the sphere.
Equations �7� and �8� give us an approximation to calculate
the first term of the amplitudes of the dynamic radiation
force in Eq. �5�.

The dynamic radiation force is calculated as follows. With
the obtained first- and second-order potential fields in Eqs.
�1� and �2�, the first term on the right-hand side of Eq. �5� is
calculated performing the surface integral. The second inte-
gral of this equation can be evaluated using Eqs. �7�–�9�.
Accordingly, the dynamic radiation force on the sphere is
given by

f21�t� = �a2E0Ŷ21e
−i��21t−k21z0�ez, �10�

where E0=�2�0c0
2 /2 is the energy density at the acoustic

source and Ŷ21 is the radiation force function. This function

might be decomposed as Ŷ21= Ŷa+ Ŷb+ Ŷc, where

Ŷa = − i�a2�0c0�Z1
−1* + Z2

−1�
x21

x1x2
R0�x2�R0

*�x1� , �11�

Ŷb = −
i
z0

a
x21R1�x21� , �12�

and

Ŷc = − �
n=0

+	
n + 1

x2x1
��x2x1 − n�n + 2���Rn�x2�Rn+1

* �x1�

+ Rn+1�x2�Rn
*�x1�� − n�x1Rn�x2�R�n+1

* �x1�

+ x2Rn+1� �x2�Rn
*�x1�� + �n + 2��x2Rn��x2�Rn+1

* �x1�

+ x1Rn+1�x2�R�n
*�x1�� + x2x1�Rn��x2�R�n+1

* �x1�

+ Rn+1� �x2�R�n
*�x2��� , �13�

where Rn�x�= in�hn
�2��x�+Sn�x�hn

�1��x�� and Rn��x�= in�hn
�2�

��x�
+Sn�x�hn

�1�
��x��. The prime means the derivative of the

function with respect to its argument. The function Ŷ21
depends on the size factors x2 and x1 with the restriction
x21�x1�x2.

The function Ŷa is proportional to the inverse of the ra-
diation impedance of the sphere at the fundamental frequen-
cies �1 and �2. This term is divergent when the size factors
x1 and x2 approach to zero. In the case x1 ,x2�1 we may

disregard the contribution of Ŷa to the radiation force func-

tion. Furthermore, limx21→0Ŷa=0. The contribution of func-

tion Ŷb brings up the regime of parametric amplification in
the dynamic radiation force. It has a dominant role whenever
the size factor x21 is not a small quantity. It also depends
linearly on the nonlinear parameter 
 and the ratio z0 /a. This
function has the following asymptotic behavior

�Ŷb� �
x21→+	

2z0
a−1�1 + x21
−1� .

The amplification of the radiation force with z0 does not
increase indefinitely. On that account two aspects should be
asserted. The distance z0 should be within the preshock wave
range, otherwise Eqs. �1� and �2� are no longer valid. Dif-
fraction and fluid viscosity may alter the dependence of ra-
diation force with the distance z0 �see Ref. �24��. The func-

tion Ŷc has a prominent contribution to the dynamic radiation
force whenever xmn�1. When x21=0 the incident wave be-
comes monochromatic and the dynamic radiation force in
Eq. �10� reduces to its static counterpart as obtained in Ref.
�13�.

Hereafter, we focus on the situation of which x21 is not a
very small quantity and x1 ,x2�1. Therefore, the radiation

force function becomes Ŷ21= Ŷb. In that case, the integral
formula of dynamic radiation force in Eq. �5� is reduced to

f21�t� = −� �
�0

p21
�2��t�ndS , �14�

where p21
�2�=�2�0��21

�2� /�t with �21
�2� being the second-order

velocity potential at the difference frequency. Notice the case
for which x21�1 has been analyzed elsewhere �18�.

IV. RESONANCE SCATTERING THEORY AND DYNAMIC
RADIATION FORCE

According to the RST, the response of an elastic sphere to
a plane wave excitation can be decomposed into a modal
rigid body background interfering with resonance contribu-
tions �22�. The resonances appear due to the eigenvibration
modes of some types of surface waves �Rayleigh and whis-
pering gallery waves� present on the sphere as the result of
the plane wave excitation.

To isolate the resonance contributions to the dynamic ra-
diation force, we follow the approach developed in Ref. �25�.
Accordingly, the resonance scattering function is given by

Sn
�res� =

Sn

Sn
�r� − 1, �15�

where Sn
�r��x�=h1

�2�
��x� /h1

�1�
��x� is the modal scattering func-

tion of a rigid sphere. We thus define the resonance radiation
force function of an elastic sphere as
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Ŷ21
�res� = x21S1

�res��x21�h1
�1��x21� , �16�

for which we dropped the factor 
z0 /a because it is not
relevant to resonance analysis. The resonance radiation force
function is proportional to the backscattered wave ��=�� of
mode n=1 �the dipole mode�. Furthermore, this function car-
ries a unique information of the sphere in terms of its me-
chanical parameters, including the elastic constants of the
material.

V. NUMERICAL RESULTS

We evaluate the radiation force function for three different
solid spheres, which are aluminum, silver, and tungsten. The
physical parameters under consideration of these materials
are summarized in Table I. The fluid medium is water whose
parameters are �0=1000 kg/m3, c0=1500 m/s, and 
=6.

In Fig. 1, we plot the spectrum of the function

Ȳ21=a�
z0�−1Ŷ21 for the three spheres. This function varies
within the range 0�x21�30 incremented by steps of 0.01.
We also consider x1 ,x2�1; therefore, the contributions from

Ŷa and Ŷc to the radiation force function are negligible. The
region 0�x21�5 corresponds to the crossover between the
static radiation force �x21=0� and the fully developed dy-
namic radiation force x21�5. To see how larger the magni-
tude of the dynamic radiation force in this region is com-

pared to that of the static counterpart consider z0 /a=1000.
The magnitude of the static radiation force function for
all spheres is about the unit �26�, while that for the dynamic
radiation force function in x21�5 is around 12 000.
Therefore, the magnitude of the fully developed dynamic
radiation force is 81 dB higher than that of the static radia-
tion force. The spectrum of dynamic radiation force function
follows the behavior of the radiation force function for a
rigid sphere in which cc ,cs ,�1→ +	, except for the appear-
ance of well-defined resonances. The labels Al-n, Ag-n, and
W-n indicate the nth resonance in the radiation force func-
tion for, respectively, the aluminum, the silver, and the tung-
sten spheres. Only the first three resonances are highlighted
in the graphs.

The spectrum of the resonance radiation force function for
the aluminum sphere is plotted in Fig. 2�a�. We plot the
phase of the corresponding resonance scattering function in
Fig. 2�b�. Whenever the spectrum undergoes a resonance or
an antiresonance �destructive interference of two adjacent

FIG. 3. The spectrum of the resonance radiation force function
of the silver sphere. �a� Magnitude. �b� Phase of the resonance
scattering function.

TABLE I. Physical parameters for the spheres after Ref.
�26�.

Speed of sound

Material
Density
�kg/m3�

Compressional
�m/s�

Shear
�m/s�

Aluminum �Al� 2700 6374 3111

Silver �Ag� 10500 3704 1698

Tungsten �W� 19250 5221 2887
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FIG. 1. Magnitude of the radiation force function Ȳ21. The la-
bels Al-n, Ag-n, and W-n indicate the nth resonance in the radiation
force function. �a� Aluminum. �b� Silver. �c� Tungsten.

FIG. 2. The spectrum of the resonance radiation force of the
aluminum sphere. �a� Magnitude. �b� Phase of the resonance scat-
tering function.
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peaks �27�� the phase shifts by �. The almost constant be-
havior of the phase near the first peak reveals that the peak is
not related to a resonance of the sphere.

In Fig. 3�a�, we have the spectrum of the resonance radia-
tion force function for the silver sphere. The phase of the
resonance scattering function is shown in Fig. 3�b�. We have
a similar behavior of the spectrum as observed for the
aluminum sphere.

The spectrum of the resonance radiation force function for
the tungsten sphere is presented in Fig. 4. The behavior of
the resonances as well as the phase of S1

�res� follow those of
the aluminum and the silver spheres.

VI. DISCUSSION AND CONCLUSION

We have carried out a theoretical analysis of dynamic
radiation force caused by bichromatic waves on a target
taking into account the nonlinearty of the fluid medium. In
the analysis, the object target must be within the preshock
wave range. To obtain the force exerted on an solid elastic
sphere we had to solve the scattering problem in the quasi-
linear approximation using the partial wave expansions given
in Eqs. �1� and �2�. The incident and scattered fields were
used in Eq. �5� yielding the radiation force. It was demon-
strated that dynamic radiation force is caused by parametric
amplification of the difference frequency wave. This is

experimentally supported by Ref. �21�. Further, the force is
proportional to the nonlinear parameter of the fluid 
. We
therefore presented a much simpler formula for dynamic
radiation force in Eq. �14�.

The obtained result for the dynamic radiation function in
Eq. �12� permitted a straight connection with this force and
the RST. To the best of the author’s knowledge, such a con-
nection has not yet been explored before, either theoretically
or experimentally. The spectrum of the dynamic radiation
force as a function x21 exhibited well-defined resonances,
which have larger amplitude �about 81 dB higher� and are
better shaped than those present in static radiation force �26�.
The resonances are caused by eigenvibrations in some sur-
face waves on the sphere at the difference frequency �21.
The RST allowed us to separate the resonance part of the
radiation force function as given in Eq. �16�. We, thus, ana-
lyze the resonance spectrum for three different spheres made
of aluminum, silver, and tungsten. Furthermore, the study of
dynamic radiation force on spherical shells can be readily
done by using the present theory. The location, amplitude,
and width of these resonances depend upon the mechanical
and the elastic properties of the sphere. Hence, the spectrum
information could be used as the material signature in a non-
contact acoustic spectroscopy technique. In this method, the
induced vibration by the dynamic radiation force on a speci-
men could be measured by a laser vibrometer yielding the
spectrum of the force �19�. From the spectrum it is possible
to extract the elastic properties of the specimen in a similar
manner as done in the resonant ultrasound spectroscopy �28�.

We have not considered thermoviscous effects in the fluid.
By neglecting such effects we ruled out acoustic streaming in
the boundary of the sphere. Usually streaming has the ten-
dency of altering the total effective force acting on a target.
Moreover, the dependency of dynamic radiation force with
temperature was not accomplished here. Variations in the
temperature may change the location and width of the
resonances in the spectrum of the dynamic radiation force.

In conclusion, this paper presented a comprehensive the-
oretical analysis of the dynamic radiation force on solid
spheres. The spectrum of this force carries useful informa-
tion of the sphere related to its elastic and mechanical
properties.
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